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§ ICA 1, Universiẗat Stuttgart, Pfaffenwaldring 27, 70569 Stuttgart, Germany

Received 20 January 1997, in final form 10 March 1997

Abstract. We introduce a lattice model, in which frustration plays a crucial role, to describe
relaxation properties of granular media. We show Monte Carlo results for compaction in the
presence of vibrations and gravity, which compare well with experimental data.

Despite their importance for industrial applications, relaxation phenomena in non-thermal
disordered systems as granular media have only recently begun to be studied systematically.
A common and simple experiment in this context is the compaction of sand. When a box
filled with loose packed sand is shaken at low amplitude, the density visibly increases. If
in addition the density goes beyond a definite threshold the mechanical properties of sand
abruptly change and the granular structure cannot be sheared any longer without a volume
increase. This phenomenon, very important in practical applications [1], was observed by
Reynolds [2] and is referred to as the ‘Reynolds’ or ‘dilatancy’ transition.

For a given macroscopic parameter as density a granular packing can be in a huge
number of different microscopical states. In order to describe this situation concepts from
statistical mechanics have been introduced [3–5]. Relations to spin glasses (SGs) were
suggested several years ago (see references in [3]). In fact a characteristic of SGs is their
non-trivial phase space which gives rise to their complex static and dynamic behaviour. The
phase-space structure of SGs is due to the presence of quenched disorder and frustration.
Strictly speaking, quenched disorder is not present in granular media but there are effects
of ‘geometric frustration’, known also from hard-sphere systems. This kind of frustration
is generated by the steric constraints imposed by the hard-core repulsion of neighbouring
grains and the subsequent interlocking which leads to non-local cooperative macroscopic
rearrangement. Recently, the analogies between an intrinsically frustrated system, such as
frustrated percolation [6], and phase transitions in granular packing have been outlined [7].

In this paper we present computer simulations of a simple frustrated Ising lattice gas
model, subject to gravity following a diffusion-like Monte Carlo dynamics. This model
without gravity shows complex behaviour similar to that observed in glass-forming liquids
and spin glasses [8]. We will show how the density of our lattice gas is strongly dependent
on the duration and amplitude of simply implemented vibrations. Our data reproduce the
logarithmic relaxation behaviour found in real experiments in a sequence of taps and offer the
possibility of also making new predictions for single-tap processes. Our data also reproduce
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the distribution of forces at the bottom of the system as found in real experiments. A relation
appears between the SG transition, signalled by the vanishing of macroscopic self-diffusion,
and the Reynolds transition in granular systems.

We consider a system of particles which move on a square lattice whose bonds are
characterized by quenched random numbersεij = ±1. On sitei we setni = 1 if a particle
is present and 0 otherwise. The particles have an internal degree of freedomSi = ±1,
which describes the sterical properties of the grains, and are subjected to the constraint that
whenever two grains (i andj ) are neighbouring their ‘spin’ must satisfy the relation

εijSiSj = 1 (1)

i.e. they have to fit the local ‘geometrical’ structure. When the density of particles is
high enough they feel the frustration that has been imposed by the choice ofεij . As
a consequence, in resemblance to frustrated percolation [6], particles can never close a
frustrated loop in the lattice leaving empty sites (see later).

The physical origin of the bond variablesεij is the geometrical frustration originated
in granular systems by the actual shapes and arrangements of particles. The internal
variablesSi represent, for example, internal orientation of particles with non-symmetric
shapes. Particles can be nearest neighbours only if the relative orientation is appropriate.

We have studied this system when subject to ‘gravity’ and ‘external vibrations’. The
dynamics of our model consists of a random diffusion of particles on a square lattice tilted
by 45◦ (see figure 1) in such a way as to preserve the above constraint. The particles attempt
a move upward with probabilityP2 and a move downward withP1 (with P1+ P2 = 1). A
move is made only if the internal degrees of freedom satisfy equation (1). Similarly a spin
flips with probability one if there is no violation of equation (1), and does not flip otherwise.
In the absence of vibrations, the effect of gravity imposesP2 = 0. When vibrations are
switched onP2 becomes finite. The crucial parameter which controls the dynamics and the
final density is the ratiox(t) = P2(t)/P1(t) which describes the amplitude of the vibration.

It is possible to associate with this model a standard Hamiltonian formalism and establish
a magnetic analogy, based on the following definition,

−H =
∑
〈ij〉

J (εijSiSj − 1)ninj + µ
∑
i

ni (2)

whereSi = ±1 are spin variables,ni = 0, 1 are occupancy variables andεij = ±1 quenched
interactions associated with the bonds of the lattice. It has been shown in the mean-field
approximation [9] and numerically for the finite-dimensional systems [8] that Hamiltonian
(2) exhibits a spin-glass transition at high density (or low temperature).

This Hamiltonian reduces, in theµ → ∞ limit (all sites occupied), to the usual±J
Ising spin glass[10]. In the limit J → ∞, it describes a lattice gas in which frustrated
loops entirely filled with sites are forbidden because along closed paths energetic reasons
impose the quantity

∑
i,j∈loop(εij SiSj−1) to be zero. In this limit a version ofsite frustrated

percolation is recovered [6, 8]. When the particle number is fixed the configuration space
of the system obtained in this last limit is the same as that of the frustrated lattice gas
introduced at the beginning of this paragraph. The possibility of relating the parameters of
Hamiltonian (2) to definite grain properties can be based on the comparison between the
behaviour of this model and actual experimental results (see [14]).

We have studied the model introduced above in a two-dimensional box with periodic
boundary conditions along thex-axis and rigid walls at its bottom and top. After fixing the
random quenchedεij on the bonds, an initial particle configuration is prepared by randomly
inserting particles of given spin into the box from its top and then letting them fall down,
with the described dynamics (P2 = 0), until the box is filled. To obtain an initial low-density
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Figure 1. A schematic picture of the lattice model considered here. Wavy and straight lines
represent the two different kinds of bonds (εij = ±1). Full (open) circles are present particles
with spin Si = +1 (Si = −1).

configuration we do not allow particle spins to flip in this preparation process. The state
prepared in this way has a density of about 0.520 and corresponds to random loose packing.

We know experimentally that sand which is randomly poured into a box reaches higher
density after shaking. In some experiments, the shaking process occurs in a sequence of
‘taps’, defined by their duration and amplitude. During a sequence of taps the density
decays logarithmically to a static limit (see [11]). We have also studied this phenomena.
In our MC simulation, each tap is a process in which vibrations are step like:x(t) = x0 if
t ∈ [0, τ ] while for t > τ the system evolves subject only to gravity (P1 = 1 andP2 = 0,
i.e. x(t) = 0) until it reaches a final ‘static’ configuration [12] where the simulation stops.
After each tap we have measured the bulk density of the systemρ(τ, x0; tn) defined as the
mean density in the lower 25% of the box (tn is thenth tap number). Our results for density
relaxation, in a box of size 30× 60 averaged over 32 different{εij } configurations, are
shown in the insert of figure 2. The behaviour ofρ(τ, x0; tn) is well fitted by the following
logarithmic function in agreement with the experimental data (see [11, 13]):

ρ(τ, x0; t) = ρs −1ρ∞/[1+ B ln(t/τ0+ 1)]. (3)

In figure 2 we have collapsed our results for four different amplitudes as well as the
experimental data for three different amplitudes on a single curve using equation (3) and
see that the agreement is very satisfactory. For the data reported here, typical values of
parameters in equation (3) areρs ∈ [0.76, 0.78], 1ρ∞ ∈ [0.02, 0.06], B ∈ [10−1, 101] and
τ0 ∈ [100, 103].

We have also simulated a single-tapping process. In the simulation we start att = 0 from
a random loose-packing configuration as described before, then we introduce ‘vibrations’
in the interval t ∈ [0, τ ] linearly decreasing the ratiox(t), x(t) = x0(1 − t/τ ) (with
x0 = 1). For t > τ we put x(t) = 0 and let the system evolve until it reaches a final
‘static’configuration. The final ‘static’ bulk densityρ(τ) monotonically increases with the
vibration timeτ asymptotically reaching a maximal density valueρ∗ ∼ 0.78 whenτ →∞
[14].

During the dynamical process described above, we have recorded the time dependence
of the mean bulk densityρ(t, τ ). We find that the static limit is reached with a stretched
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Figure 2. Experimental data from [11] (squares) and our MC data (circles) rescaled according
to equation (3). Inset: densityρ(τ, x0; tn) from our MC data as a function of tap numbertn,
for tap vibrations of amplitudex0 = 0.001, 0.01, 0.05, 0.1 (from bottom to top) and duration
τ = 3.28× 101. The superimposed curves are logarithmic fits from equation (3).

‘relaxation form’ [14]:

ρ(t, τ ) = ρs(τ )− A exp(−((t − t0)/T )β) (4)

Typical values of the parameters of equation (4) in our range ofτ areA ∈ [0.15, 0.25],
t0 ∈ [100, 103], T ∈ [102, 104], β ∼ 2.3. Note that the stretched exponential behaviour only
sets in after a timet0, which can be very long ifτ is long. The relaxation processes found
here are rather different from the logarithmic relaxation found in the sequence of taps and
could be investigated experimentally.

The effect of compaction is clearly shown by the final density profile as a function of
depthh, ρ(h, τ ), depicted in figure 3. In this case the box has a size 100×200 and the final
states have been averaged over 32 to 512 different{εij } configurations (according to the
value ofτ ). As suggested in [15] the density profile of granular media can be fitted using
a generalized Fermi–Dirac distribution. As shown in figure 3 the data from our model are
well fitted by such a function for different values ofτ :

ρ(h, τ ) = ρs(τ )[1− 1/[1+ exp((h− h0(τ ))/s(τ ))]] . (5)

The parameters in equation (5) for our data are in the rangeρs(τ ) ∈ [0.738, 0.780],
h0(τ ) ∈ [60, 67] (for the box sizes given in figure 3) ands(τ ) ∈ [0.4, 1.2].

To characterize a particle packing and its capability of internal rearrangement, we studied
their self-diffusivity at fixed particle density by settingx = 1. Specifically we studied
the time dependence of the particle mean square displacementR2(t) = 〈(1/N)∑i (ri(t)−
ri(0))2〉. A very interesting phenomenon is observed for densities close to the maximal value
ρ∗:R2(t) shows deviations from the linear time-dependence typical of standard Brownian
diffusive motion and presents an inflection point [8]. This signals the existence of two
characteristic time regimes for particle motion (as already argued in [16]). From the long
time behaviour ofR2(t) ∼ Dt we extract the diffusion coefficientD(ρ), which goes to zero
at aboutρ∗, signalling a localization transition in which particles are confined in local cages
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Figure 3. The density profileρ(h, τ ) as a function of depthh (h = 0 corresponds to the
top of the box,h = 200 to the bottom) for different values of the vibration durationτ
(τ ∈ [3.28× 10−3, 4.92× 104]). In the bulk of the system, for fixedh, ρ(h, τ ) is an increasing
function of τ . The continuous curves are Fermi–Dirac function fits from equation (5). Inset:
rescaled density profileρ(h, τ )/ρs(τ ) as a function of the rescaled depth(h − h0(τ ))/s(τ )

(ρs(τ ), h0(τ ) ands(τ ), are fitting parameters to obtain the data collapse).

and the macroscopic diffusion-like processes are suppressed. This phenomenon may also
be described in a different way:ρ∗ is the density above which it becomes impossible to
obtain a macroscopic rearrangement of the particle positions without increasing the system
volume, i.e. the density at which macroscopic shear in the system is impossible without
dilatancy. This then seems to correspond to the quoted Reynolds transition in real granular
media.

There is some evidence from other Monte Carlo simulations that the densityρ∗

numerically coincides with the density at which the SG transition of Hamiltonian (2) (for
J →∞) is located [8]. This should imply that atρ∗ the SG correlation lengthξSG diverges,
signalling the presence of a collective behaviour in the system. The coincidence of the SG
transition and the suppression of self-diffusivity suggests the presence of links between the
Reynolds transition in granular media, the SG transition in magnetic systems and the ‘ideal’
glass transition in glass forming liquids [7, 8].

The model introduced here is also suited to the study of other aspects of granular
media. If a force is applied at the top of a granular system in a box, the local distribution
of forcesv at the bottom follows an exponential lawP(v) = a exp(−c, v). As suggested
in [17–19], it is possible to introduce simplified models to describe the physics of forces
in granular systems. In particular, a model has been proposed in [18] in which forces are
represented by scalars. In our lattice model we apply the same approximation to study the
force distributions in static configurations of the system. We suppose that each present site
(ni = 1) carries its own weight (equal to unity) and transmits the forcewi acting on it
to its first left and right neighbouring sites in the lower row. If its right (left) neighbour
has a distancelr (ll ) from site i, the force contribution it receives from this site is equal to
wi · ll/(lr + ll) (wi · lr/(lr + ll), respectively, for the left site). We have calculated the force
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Figure 4. Force distributionP(v) as a function of weightv normalized by the mean force felt
by the sites, for a static configuration of densityρs = 0.764. Superimposed is the fit function
in equation (6). The fit parameters area = 12.4, b = 5.6 andc = 4.6. The distributionP(v)
becomes narrower when the bulk density increases and is independent of the depth at which it
is measured (see [18]).

distributionP(v) at the bottom of our system as shown in figure 4. In agreement with the
experimental data and the result of the model introduced in [18], our data are well fitted by

P(v) = avb exp(−c, v). (6)

As noted in [18], where moreover further details on the physical meaning of equation (6)
may be found, the power law in front of the exponential would be very difficult to detect
experimentally since it affects the distribution for small values ofv. The dip present at
small v originates from a pathology of our lattice model in which cavities have too regular
shapes and so a large number of particles exist which carry just their own weight.

In conclusion, in this paper a frustrated Ising lattice gas has been introduced to describe
different aspects of the phenomenology of granular systems, such as compaction in the
presence of vibrations and an exponential force distribution. The results are in agreement
with real experiments. The fact that density relaxation in this model is shown to be
excellently described by the logarithmic law experimentally found is very interesting, and
this suggests profound connections with the physics of granular systems. The model is able
to predict new results which are amenable to experimental observation, some of which have
been reported here, while others are under investigation [14]. The model which contains
geometrical frustration as an essential ingredient also shares features of spin glasses and
glass-forming liquids.

Although here we have reported numerical results in two dimensions, we also expect
the same features in three dimensions.

We thank H Jaeger and J Knight for sending us their experimental data and IDRIS for
computer time on Cray-T3D.
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